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Abstract. The perimeter generating function derived recently by Brak et a /  for row-convex 
polygom on the square lattice is generalized to the rectangular lattice. 

A convex polygon on the square lattice is a special case of self-avoiding polygons such 
that a straight line on the bonds of the dual lattice cuts a convex polygon at most 
twice. The perimeter generating function for convex polygons on the square lattice 
was first obtained by Delest and Viennot (1984) and then rederived by Guttmann and 
Enting (1988), Lin and Chang (1988) and Kim (1988). Lin and Chang (1988) also 
generalized the result to the rectangular lattice. 

Recently Brak er a1 (1990) derived the perimeter generating function for row-convex 
polygons on the square lattice, which include the convex polygons as a subset. A 
vertical line on the bonds of the dual lattice cuts a row-convex polygon at most twice. 
In this comment we generalize their result to the rectangular lattice. 

The three-variable generating function for row-convex polygons on the rectangular 
lattice is defined by 

X oc 

where g, is the generating function for row-convex polygons whose first vertical row 
contains r squares, and P,,s,k is the number of row-convex polygons with 2r vertical 
steps, 2s horizontal steps and area k. It was shown by Temperley (1956) that g, satisfies 
the following equations 

g, = x2y2z + x2z[g, +2g2+ 3g3 +4g4+. . .] 
g2 = ~ ~ y ~ ~ ~ + ~ ~ ~ ~ [ 2 y ~ g ~ + ( i  +2y2)g2+(2+2y2)g3+ (3+2y2)g4+.  . .] 

g4= x ~ Y ~ z ~ + x ~ z ~ [ ~ Y ~ ~ ,  + (3y4+2y6)g2+ (2y2+2y4+2y6)g3 

g3 = ~ ~ y ~ ~ ~ + ~ ~ ~ ~ [ 3 y ~ g ~  +(2~*+2 ,v~)g2+(1  +2y2+2y4)g3+(2+2y2+2y4)g4+. . .] 

+(1+2y2+2y4+2y6)g4+.  . .] 
and similarly for r > 4. It follows from (2) that we have the recurrence relation 

gr+2-2z(1 +y2)gr+l +z2(1 +4y2+y4)g,-2z3(y2+y4)gl-l  +z4y4g,-, 

- - X 2 Z r + 2  ( l - ~ ~ ) ~ g r -  (3)  
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Temperley (1956) pointed out that these equations are soluble in two special cases of 
y = 1 and z = 1 and he found 

G(x, 1, z) = x2z( 1 - z ) ~ / [  1 - (x2+4)z  + (x2+6)z2 - (x4 - x2+4)z3 + (1 - x2)z4]. (4) 

In the special case of z = 1, he tried g, = AA and obtained the characteristic equation 

The perimeter generating function is given by 
4 

G ( x , y , l ) = C g , =  A,A,/( l -A,)  
r , = I  

where A I , .  . . , A 4  are the four roots of ( 5 )  and Ai can be determined from the four 
equations of (2). Temperley did not calculate Aj explicitly. Recently Brak et a /  (1990) 
considered the special case of x = y (square lattice) and used the computer algebra 
program MATHEMATICA (Wolfram 1988) to obtain the perimeter generating function 
G(y, y ,  1) in a closed form. We shall generalize their result to the rectangular lattice. 

The four roots of ( 5 )  are 

AI=[l  - x + ( l  + ~ ) y ~ + ( S + ) ’ / ~ ] / 2  

A , = [ I + x + ( I  -x )y2- (~ - )”* ] /2  

where 

S ,  = (1 + x2)(1 - y 2 ) 2 *  2x(y4- 1). 

Notice that h 3 ,  h 4 ,  S- can be obtained from A I ,  A 2 ,  S, by the exchange of x with -x. 
In the limit of y + 0, we have 

while g, + 0(y2‘x2), therefore we have A ,  = A3 = 0. Following the procedure of Brak 
et al (1990), we define 

33 

H =  1 rg,. 
r =  1 

(9) 

Then g,, H, G are given by 

g, = A2 A i- CT 

H = A2A2/( 1 - A,)’+ CT (10) 

G = A2A2/( 1 - A 2 )  + CT 

where CT denotes the conjugate term obtained from the other one by the exchange of 
x with -x. It follows from (2), (3) and (9) that 

g ,  = A2A2 + A4A4 = x2y2 + x 2 H  
(11) 

g2-g) = Azhz(h2-  1) + A 4 A 4 ( A 4 -  1) = x 2 y 2 ( y 2 -  1) + x2(2y2 - l )G.  
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We use the computer algebra program REDUCE (Stauffer et a1 1989) to obtain the 
following result 

Azhz = [( 1 -y2)(1 + X )  + S?”]A, (12) 

where 

A. = 

with 

U = (  

a ( S T ) ” ’ +  bT”’+ cS”’+d]/32y2(1 +y’)A (13) 

- y2)(2x’y2 - X’ - 15y2+9) 

b = x4( 1 -2y2)(y2 - 1)2+x2(17y6-28y4+29y2- 10) +3(y2 - 1)*( l l y 2 + 3 )  

c = 2(y4 - 1)(2x2y’ - x2 -9y2 +9)  

d = 2(y4- 1 ) [ 2 ~ ~ y ~ - 3 ~ ~ y ~ + ~ ~ - 2 7 ~ ~ 3 / ~ + 2 9 ~ ~ y ~ -  1Ox2+9(y2- 1)2] 

A = 18(1 -y’)* - ~ ’ ( 2  - 5y’ +2y4) 

s = 1 - 2(x*+y’) + x4+y4  - 12x2y2-2x2y’(x2 + y 2 )  + x4y4 

T = 2( 1 + x’)(l -y2)*+2(1 - y 2 ) S ” ’ .  

The perimeter generating function for the row-convex polygons on the rectangular 
lattice is given by 

G(x, y ,  1) = (1 -y2)[42( 1 -y’)*-2x2(5 - 14y2+ 5y4) -6( 1 -y2)S1’2 

- (1 - y 2 ) (  17 - x’) TI” - (ST)”’]/8A. (14) 
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